38 research outputs found

    Weighted Low Rank Approximation for Background Estimation Problems

    Full text link
    Classical principal component analysis (PCA) is not robust to the presence of sparse outliers in the data. The use of the â„“1\ell_1 norm in the Robust PCA (RPCA) method successfully eliminates the weakness of PCA in separating the sparse outliers. In this paper, by sticking a simple weight to the Frobenius norm, we propose a weighted low rank (WLR) method to avoid the often computationally expensive algorithms relying on the â„“1\ell_1 norm. As a proof of concept, a background estimation model has been presented and compared with two â„“1\ell_1 norm minimization algorithms. We illustrate that as long as a simple weight matrix is inferred from the data, one can use the weighted Frobenius norm and achieve the same or better performance

    On a Problem of Weighted Low-Rank Approximation of Matrices

    Full text link
    We study a weighted low rank approximation that is inspired by a problem of constrained low rank approximation of matrices as initiated by the work of Golub, Hoffman, and Stewart (Linear Algebra and Its Applications, 88-89(1987), 317-327). Our results reduce to that of Golub, Hoffman, and Stewart in the limiting cases. We also propose an algorithm based on the alternating direction method to solve our weighted low rank approximation problem and compare it with the state-of-art general algorithms such as the weighted total alternating least squares and the EM algorithm

    A Nonconvex Projection Method for Robust PCA

    Full text link
    Robust principal component analysis (RPCA) is a well-studied problem with the goal of decomposing a matrix into the sum of low-rank and sparse components. In this paper, we propose a nonconvex feasibility reformulation of RPCA problem and apply an alternating projection method to solve it. To the best of our knowledge, we are the first to propose a method that solves RPCA problem without considering any objective function, convex relaxation, or surrogate convex constraints. We demonstrate through extensive numerical experiments on a variety of applications, including shadow removal, background estimation, face detection, and galaxy evolution, that our approach matches and often significantly outperforms current state-of-the-art in various ways.Comment: In the proceedings of Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Online and Batch Supervised Background Estimation via L1 Regression

    Get PDF
    We propose a surprisingly simple model for supervised video background estimation. Our model is based on â„“1\ell_1 regression. As existing methods for â„“1\ell_1 regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures

    Chronic Obstructive Pulmonary Disease (COPD): Making Sense of Existing GWAS Findings in Indian Context

    Get PDF
    To date, more than 1456 associations have been identified for Chronic Obstructive Pulmonary Disease (COPD) risk through Genome-Wide Association Studies (GWAS). However, target genes for COPD susceptibility in the Indian population and the mechanism underlying remains largely unexplored and no GWAS studies on COPD are available on the Indian population till now. This study was conducted using the existing public data on GWAS of different parts of the world, and the genetic polymorphisms to understand the possible mechanisms of these polymorphisms using available data from the Genotype-Tissue Expression (GTEx) project. We jotted down 16 important genes and 28 Single Nucleotide Polymorphisms (SNPs) in the Indian population from 1456 variants. Pathway analysis showed that these relevant genes are mostly associated with immune responses and activation, which is a key factor in COPD development. Our investigation revealed possible target genes associated with COPD in the context of the Indian population

    Weighted Low-Rank Approximation of Matrices and Background Modeling

    Get PDF
    We primarily study a special a weighted low-rank approximation of matrices and then apply it to solve the background modeling problem. We propose two algorithms for this purpose: one operates in the batch mode on the entire data and the other one operates in the batch-incremental mode on the data and naturally captures more background variations and computationally more effective. Moreover, we propose a robust technique that learns the background frame indices from the data and does not require any training frames. We demonstrate through extensive experiments that by inserting a simple weight in the Frobenius norm, it can be made robust to the outliers similar to the â„“1\ell_1 norm. Our methods match or outperform several state-of-the-art online and batch background modeling methods in virtually all quantitative and qualitative measures.Comment: arXiv admin note: text overlap with arXiv:1707.0028

    Shrinkage Function And Its Applications In Matrix Approximation

    Full text link
    The shrinkage function is widely used in matrix low-rank approximation, compressive sensing, and statistical estimation. In this article, an elementary derivation of the shrinkage function is given. In addition, applications of the shrinkage function are demonstrated in solving several well-known problems, together with a new result in matrix approximation

    Weighted Low-Rank Approximation of Matrices:Some Analytical and Numerical Aspects

    Get PDF
    This dissertation addresses some analytical and numerical aspects of a problem of weighted low-rank approximation of matrices. We propose and solve two different versions of weighted low-rank approximation problems. We demonstrate, in addition, how these formulations can be efficiently used to solve some classic problems in computer vision. We also present the superior performance of our algorithms over the existing state-of-the-art unweighted and weighted low-rank approximation algorithms. Classical principal component analysis (PCA) is constrained to have equal weighting on the elements of the matrix, which might lead to a degraded design in some problems. To address this fundamental flaw in PCA, Golub, Hoffman, and Stewart proposed and solved a problem of constrained low-rank approximation of matrices: For a given matrix A=(A1  A2)A = (A_1\;A_2), find a low rank matrix X=(A1  X2)X = (A_1\;X_2) such that rank(X){\rm rank}(X) is less than rr, a prescribed bound, and ∥A−X∥\|A-X\| is small.~Motivated by the above formulation, we propose a weighted low-rank approximation problem that generalizes the constrained low-rank approximation problem of Golub, Hoffman and Stewart.~We study a general framework obtained by pointwise multiplication with the weight matrix and consider the following problem:~For a given matrix A∈Rm×nA\in\mathbb{R}^{m\times n} solve: \begin{eqnarray*}\label{weighted problem} \min_{\substack{X}}\|\left(A-X\right)\odot W\|_F^2~{\rm subject~to~}{\rm rank}(X)\le r, \end{eqnarray*} where ⊙\odot denotes the pointwise multiplication and ∥⋅∥F\|\cdot\|_F is the Frobenius norm of matrices. In the first part, we study a special version of the above general weighted low-rank approximation problem.~Instead of using pointwise multiplication with the weight matrix, we use the regular matrix multiplication and replace the rank constraint by its convex surrogate, the nuclear norm, and consider the following problem: \begin{eqnarray*}\label{weighted problem 1} \hat{X} &=& \arg \min_X \{\frac{1}{2}\|(A-X)W\|_F^2 +\tau\|X\|_\ast\}, \end{eqnarray*} where ∥⋅∥∗\|\cdot\|_* denotes the nuclear norm of XX.~Considering its resemblance with the classic singular value thresholding problem we call it the weighted singular value thresholding~(WSVT)~problem.~As expected,~the WSVT problem has no closed form analytical solution in general,~and a numerical procedure is needed to solve it.~We introduce auxiliary variables and apply simple and fast alternating direction method to solve WSVT numerically.~Moreover, we present a convergence analysis of the algorithm and propose a mechanism for estimating the weight from the data.~We demonstrate the performance of WSVT on two computer vision applications:~background estimation from video sequences~and facial shadow removal.~In both cases,~WSVT shows superior performance to all other models traditionally used. In the second part, we study the general framework of the proposed problem.~For the special case of weight, we study the limiting behavior of the solution to our problem,~both analytically and numerically.~In the limiting case of weights,~as (W_1)_{ij}\to\infty, W_2=\mathbbm{1}, a matrix of 1,~we show the solutions to our weighted problem converge, and the limit is the solution to the constrained low-rank approximation problem of Golub et. al. Additionally, by asymptotic analysis of the solution to our problem,~we propose a rate of convergence.~By doing this, we make explicit connections between a vast genre of weighted and unweighted low-rank approximation problems.~In addition to these, we devise a novel and efficient numerical algorithm based on the alternating direction method for the special case of weight and present a detailed convergence analysis.~Our approach improves substantially over the existing weighted low-rank approximation algorithms proposed in the literature.~Finally, we explore the use of our algorithm to real-world problems in a variety of domains, such as computer vision and machine learning. Finally, for a special family of weights, we demonstrate an interesting property of the solution to the general weighted low-rank approximation problem. Additionally, we devise two accelerated algorithms by using this property and present their effectiveness compared to the algorithm proposed in Chapter 4
    corecore